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Abstract An edge-based smoothed finite element method
(ES-FEM) using triangular elements was recently proposed
to improve the accuracy and convergence rate of the existing
standard finite element method (FEM) for the elastic solid
mechanics problems. In this paper, the ES-FEM is extended
to more complicated visco-elastoplastic analyses using the
von-Mises yield function and the Prandtl–Reuss flow rule.
The material behavior includes perfect visco-elastoplasticity
and visco-elastoplasticity with isotropic and linear kinematic
hardening. The formulation shows that the bandwidth of stiff-
ness matrix of the ES-FEM is larger than that of the FEM,
and hence the computational cost of the ES-FEM in numer-
ical examples is larger than that of the FEM for the same
mesh. However, when the efficiency of computation (com-
putation time for the same accuracy) in terms of a posteriori
error estimation is considered, the ES-FEM is more efficient
than the FEM.
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1 Introduction

The strain smoothing technique [4] has been proposed to sta-
bilize the solutions in the context of the meshfree method and
then applied in the natural element method [31]. Liu et al.
has generalized the gradient (strain) smoothing technique
[9] and applied it in the meshfree context to formulate the
node-based smoothed point interpolation method (NS-PIM
or LC-PIM) [17,18] and the linearly conforming radial point
interpolation method (NS-RPIM or LC-RPIM) [11]. Apply-
ing the same idea to FEM, a cell-based smoothed finite ele-
ment method (SFEM or CS-FEM) [10,12] and a node-based
smoothed finite element method (NS-FEM) [15] have also
been formulated.

In the CS-FEM, the strain smoothing domains and the
integration are performed over the quadrilateral elements,
and these smoothing domains can be divided into one or
many smoothing cells (SC) on each element, as shown in
Fig. 1. When the number of SC of the elements equals 1, the
CS-FEM solution has the same properties with those of FEM
using reduced integration. When SC approaches infinity, the
CS-FEM solution approaches to the solution of the stan-
dard displacement compatible FEM model [12]. In practical
calculation, using four SCs for each quadrilateral element
in the CS-FEM is easy to implement, work well in general
and hence advised for all problems. The numerical solution
of CS-FEM (SC = 4) is always stable, accurate, much better
than FEM, and often very close to the exact solutions. The
CS-FEM has been developed for general n-sided polygo-
nal elements (nSFEM or nCS-FEM) [7], dynamic analy-
ses [6], incompressible materials using selective integration
[20,25], plate and shell analyses [5,19,24,28,29], and further
extended for the extended finite element method (XFEM)
to solve fracture mechanics problems in 2D continuum and
plates [1].
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Fig. 1 Division of quadrilateral
element into the smoothing cells
(SCs) in the CS-FEM by
connecting the mid-edge-points
of opposite edges of SCs. a 1
SC; b 2 SCs; c 3 SCs; d 4 SCs;
e 8 SCs; f 16 SCs
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Fig. 2 n-Sided polygonal elements and the smoothing cell (shaded
area) associated with nodes in the NS-FEM

In the NS-FEM, the strain smoothing domains and the
integration of the weak form are performed over the cells
associated with nodes, and methods can be applied easily to
triangular, 4-node quadrilateral, n-sided polygonal elements
for 2D problems and tetrahedral elements for 3D problems.
For n-sided polygonal elements, the cell�(k) associated with
the node k is created by connecting sequentially the mid-
edge-point to the central points of the surrounding n-sided
polygonal elements of the node k as shown in Fig. 2. When
only linear triangular or tetrahedral elements are used, the
NS-FEM produces the same results as the method proposed
by Dohrmann et al. [8] or to the LC-PIM [17] using lin-
ear interpolation. The upper bound property shown in the
NS-PIM [16] was also found in the NS-FEM [15]. Then, by
combing the NS-FEM, FEM and a scale factor α ∈ [0, 1],

a so-called the alpha Finite Element Method (αFEM) [13]
using triangular and tetrahedral elements is proposed to give
a nearly exact solution in strain energy. The NS-FEM has
been developed for adaptive analysis [22].

Recently, an edge-based smoothed finite element method
(ES-FEM) [14] was also been formulated for static, free and
forced vibration analyses in 2D problems. The ES-FEM uses
triangular elements that can be generated automatically for
complicated domains. In the ES-FEM, the system stiffness
matrix is computed using strains smoothed over the smooth-
ing domains associated with the edges of the triangles. For
triangular elements, the smoothing domain �(k) associated
with the edge k is created by connecting two endpoints of the
edge to the centroids of the adjacent elements as shown in
Fig. 3. The numerical results demonstrated that the ES-FEM
possesses the following excellent properties: (1) the numeri-
cal results are often found super-convergent and much more
accurate than those of FEM using quadrilateral elements with
the same sets of nodes; (2) there are no spurious non-zeros
energy modes found and hence the method is also stable and
works well for vibration analysis; (3) the implementation
of the method is straightforward and no penalty parameter
is used, and the computational efficiency is better than FEM
using the same sets of nodes; (4) a novel domain-based selec-
tive scheme is proposed leading to a combined ES/NS-FEM
model that is immune from volumetric locking and hence
works very well for nearly incompressible materials. The
ES-FEM has been developed for 2D piezoelectric [26], plate
[27] and primal-dual shakedown analyses [30]. The idea of
the ES-FEM is also quite straightforward to extend for the
3D problems using tetrahedral elements to give a so-called
the face-based smoothed finite element method (FS-FEM)
[21,23].

In this paper, we aim to extend the ES-FEM to even
more complicated visco-elastoplastic analyses in the solid
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Fig. 3 Triangular elements and
the smoothing domains (shaded
areas) associated with edges in
the ES-FEM
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mechanics. In this work, we combine the ES-FEM with the
work of Carstensen and Klose [2] using the standard FEM
in the setting of von-Mises conditions and the Prandtl–Reuss
flow rule. The material behavior includes perfect visco-
elastoplasticity and visco-elastoplasticity with isotropic and
linear kinematic hardening in a dual model with both dis-
placements and the stresses as the main variables. The numer-
ical procedure, however, eliminates the stress variables and
the problem becomes only displacement-dependent and is
much easy to deal with. The formulation shows that the band-
width of stiffness matrix of the ES-FEM is larger than that
of FEM, and hence the computational cost of the ES-FEM in
numerical examples is larger than that of the FEM. However,
when the efficiency of computation (computation time for
the same accuracy) in terms of a posteriori error estimation
is considered, the ES-FEM is more efficient than the FEM.

2 Dual model of visco-elastoplastic problem
using the ES-FEM

2.1 Strong form and weak form [2]

The strong form of the visco-elastoplastic problem which
deforms in the interval t ∈ [0, T ] can be described by equi-
librium equation in the domain � bounded by �

divσ + b = 0 in � (1)

where b ∈ (L2(�))
2 is the body forces, σ ∈ (L2(�))

3 is
the stress field. The essential and static boundary conditions,
respectively, on the Dirichlet boundary�D and the Neumann
boundary �N are

u = w0 on �D and σn = t̄ on �N (2)

in which u ∈ (H1(�))2 is the displacement field; w0 ∈
(H1(�))2 is prescribed surface displacement; t̄ ∈ (L2(�N ))

2

is prescribed surface force and n is the unit outward normal
matrix.

In the context of small strain, the total strain ε(u) = ∇Su,
where ∇Su denotes the symmetric part of displacement gra-
dient, is separated into two contributions

ε(u) = e(σ )+ p(ξ) (3)

where e(σ ) = C−1σ is elastic strain tensor; ξ is internal var-
iable and p(ξ) is an irreversible plastic strain in which C is
a fourth order tensor of material constants.

To describe properly the evolution process for the plastic
strain, it is required to define the admissible stresses, a yield
function, and an associated flow rule. In this work, we use the
von-Mises yield function and the Prandtl–Reuss flow rule. Let
p and ξ be the kinematic variables of the generalized strain
P = (p, ξ), and� = (σ ,α)be the corresponding generalized
stress, where α is the hardening parameter describing internal
stresses. We defineϒ to be the admissible stresses set, which
is a closed, convex set, containing 0, and defined by

ϒ = {� : �(�) ≤ 0} (4)

where � is the von-Mises yield function which is presented
specifically for different visco-elastoplasticity cases as
follows:

Case a: Perfect visco-elastoplasticity

In this case, there is no hardening and the internal vari-
ables ξ ,α are absent. The von-Mises yield function is given
simply by

�(σ ) = ‖dev(σ )‖ − σY (5)

where σY is the yield stress; ‖x‖ is the norm of tensor x and

computed by ‖x‖ =
√∑2

i=1
∑2

j=1 x2
i j ; dev(x) is the devia-

tor tensor of tensor x and defined by
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dev(x) = x − tr(x)
2

I (6)

in which I is the symmetric unit tensor and tr(x) = ∑2
i=1 xi i

is the trace operator of tensor x.
For the viscosity parameter v > 0, the Prandtl–Reuss flow

rule has the form

ṗ =
⎧
⎨
⎩

1

v
(‖dev (σ )‖ − σY ) if ‖dev (σ )‖ > σY

0 if ‖dev (σ )‖ ≤ σY

(7)

Case b: Visco-elastoplasticity with isotropic hardening

In the case of the isotropic hardening, the problem is charac-
terized by a modulus of hardening H ≥ 0, and α ≡ α I ≥ 0
(I means Isotropic) becomes a scalar hardening parameter
and relates to the scalar internal strain variable ξ by

α I = −H1ξ (8)

where H1 is a positive hardening parameter.
The von-Mises yield function is given by

�(σ , α I ) = ‖dev(σ )‖ − σY (1 + Hα I ) (9)

For the viscosity parameter v > 0, the Prandtl–Reuss flow
rule has the form

(
ṗ
ξ̇

)
=

⎧
⎪⎪⎨
⎪⎪⎩

1

v

1(
1 + H2σ 2

Y

)
( ‖dev (σ )‖ − (

1+α I H
)
σY

−HσY
(‖dev (σ )‖ − (

1+α I H
)
σY

)
)

if ‖dev (σ )‖ > (
1+α I H

)
σY

(
0
0

)
if ‖dev (σ )‖ ≤ (

1+α I H
)
σY

(10)

Case c: Visco-elastoplasticity with linear kinematic
hardening

In the case of the linear kinematic hardening, the internal
stress α ≡ αK (K means Kinematic) relates to the internal
strain ξ by

αK = −k1ξ (11)

where k1 is a positive parameter.
The von-Mises yield function is given by

�(σ ,αK ) = ‖dev(σ )− dev(αK )‖ − σY (12)

For the viscosity parameter v > 0, the Prandtl–Reuss flow
rule has the form

(
ṗ
ξ̇

)
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2v

⎛
⎝

∥∥∥dev
(
σ − αK

)∥∥∥ − σY

−
(∥∥∥dev

(
σ − αK

)∥∥∥−σY

)
⎞
⎠ if

∥∥∥dev
(
σ−αK

)∥∥∥ > σY

(
0
0

)
if
∥∥∥dev

(
σ−αK

)∥∥∥ ≤ σY

(13)

In general, the Prandtl–Reuss flow rule, with the viscosity
parameter v > 0, has the form [2]
[

ṗ
ξ̇

]
= 1

v

[
σ −	σ

α −	α

]
(14)

where 	σ and 	α are defined as the projections of (σ ,α)
into the admissible stresses set ϒ .

The visco-elastoplastic problem can now be stated gen-
erally in a weak formulation with the above-mentioned flow
rules as follows: Seek u ∈ (H1(�))2 such that u = w0

on �D and ∀v ∈ (H1
0(�))

2 = {v ∈ (H1(�))2 : v = 0 on�D},
the following equations are satisfied
∫

�

σ (u) : ε(v)d� =
∫

�

b · vd�+
∫

�N

t̄ · vd� (15)

[
ṗ
ξ̇

]
=

[
ε(u̇)− C−1σ̇

ξ(α̇)

]
= 1

v

[
σ −	σ

α −	α

]
(16)

where A : B = ∑
j,k A jkB jk denotes the scalar products of

(symmetric) matrices.

2.2 Time discretization scheme

A generalized midpoint rule is used as the time-discretiza-
tion scheme [2]. In each time step, a spatial problem needs

to be solved with given variables (u(t), σ (t),α(t)) at time
t0 denoted as (u0, σ 0,α0) and unknowns at time t1 = t0 +

t denoted as (u1, σ 1,α1). Time derivatives are substituted
by backward difference quotients; for instance u̇ is substi-
tuted by uϑ−u0

ϑ
t where uϑ = (1 − ϑ)u0 + ϑu1 with 1/2 ≤
ϑ ≤ 1. The time discrete problem now becomes: Seek uϑ ∈
(H1(�))2 that satisfies uϑ = w0 on�D and for∀v ∈ (H1

0(�))
2

∫

�

σ (uϑ) : ε(v)d� =
∫

�

bϑ · vd�+
∫

�N

t̄ϑ · vd� (17)

1

ϑ
t

[
ε(uϑ − u0)− C−1(σϑ − σ 0)

ξ(α, tϑ)− ξ(α, t0)

]
= 1

v

[
σϑ −	σϑ
αϑ −	αϑ

]

(18)

where bϑ = (1 − ϑ)b0 + ϑb1, t̄ϑ = (1 − ϑ)t̄0 + ϑ t̄1 in
which b0, t̄0,b1 and t̄1 are body forces and surface forces at
time t0, t1, respectively.

Equations (17) and (18) is in fact a dual model that has
both stress and displacement as field variables. To solve the
set of Eqs. (17) and (18) efficiently, we need to eliminate
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one variable. This can be done by first expressing explicitly
the stress σϑ in the form of displacement uϑ using Eq. (18),
and then substituting it into Eq. (17). The problem will then
becomes only displacement-dependent, and we need to solve
the resultant form of Eq. (17).

2.3 Analytic expression of the stress tensor

Explicit expressions for the stress tensor σϑ in different
cases of visco-elastoplasticity can be presented briefly as
follows [2]:

(a) Perfect visco-elastoplasticity
In the elastic phase

σϑ = C1tr (ϑ
tA) I + 2µdev (ϑ
tA) (19)

where A = ε(uϑ−u0)
ϑ
t + C−1 σ 0

ϑ
t .
In the plastic phase, the plastic occurs when‖dev(ϑ
tA)‖

> βσY and

σϑ = C1tr(ϑ
tA)I

+ (C2 + C3/‖dev(ϑ
tA)‖)dev(ϑ
tA). (20)

where

C1 = λ+ µ, C2 = v/(βv + ϑ
t),

C3 = ϑ
tσY /(βv + ϑ
t) (21)

in which β = 1/(2µ).

(b) Visco-elastoplasticity with isotropic hardening
In the elastic phase

σϑ = C1tr(ϑ
tA)I + 2µdev(ϑ
tA) (22)

In the plastic phase, the plastic occurs when ‖dev(ϑ
tA)‖
> β(1 + α I

0 H)σY and

σϑ = C1tr(ϑ
tA)I + (C3/(C2‖dev(ϑ
tA)‖)
+C4/C2)dev(ϑ
tA) (23)

where

C1 = λ+ µ,

C2 = βv(1 + H2σ 2
Y )+ ϑ
t (1 + βH1 H2σ 2

Y )

C3 = ϑ
tσY (1 + α I
0 H),

C4 = H1 H2ϑ
tσ 2
Y + v(1 + H2σ 2

Y ) (24)

in which α I
0 is the initial scalar hardening parameter.

(c) Visco-elastoplasticity with linear kinematic hardening
In the elastic phase

σϑ = C1tr(ϑ
tA)I + 2µdev(ϑ
tA) (25)

In the plastic phase, the plastic occurs when‖dev(ϑ
tA −
βαK

0 )‖ > βσY and

σϑ = C1tr(ϑ
tA)I

+ (C2 + C3/‖dev(ϑ
tA − βαK
0 )‖)

× dev(ϑ
tA − βαK
0 )+ dev(αK

0 ) (26)

where

C1 = λ+ µ, C2 = ϑ
tk1 + 2v

ϑ
t + βϑ
tk1 + v/µ
,

C3 = ϑ
tσY

ϑ
t + βϑ
tk1 + v/µ
(27)

Now, by replacing the stress σϑ described explicitly into
Eq. (17), we obtain the only displacement-dependent prob-
lem and can apply different numerical methods to solve.

2.4 Discretization in space using the FEM

The domain � is now discretized into Ne elements and Nn

nodes such that � = ⋃Ne
e=1�e and �i ∩ � j = ∅, i 	= j .

In the discrete version of (17), the spaces V = (H1(�))2

and V0 = (H1
0(�))

2 are replaced by finite dimensional sub-
spaces V

h ⊂ V and V
h
0 ⊂ V0 . The discrete problem now

becomes: Seek uϑ ∈ V
h such that uϑ = w0 on �D and

∫

�

σϑ

(
ε (uϑ − u0)+ C−1σ 0

)
: ε(v)d�

=
∫

�

bϑ · vd�+
∫

�N

t̄ϑ · vd� for ∀v ∈ V
h
0 (28)

Let (ϕ1, . . . , ϕ2Nn ) be the nodal basis of the finite dimen-
sional space V

h , where ϕi is the independent scalar hat shape
function on node satisfying condition Kronecker ϕi (i) = 1
and ϕi ( j) = 0, i 	= j , then Eq. (28) now becomes: seeking
uϑ ∈ V

h such that

Fi =
∫

�

σϑ

(
ε (uϑ − u0)+ C−1σ 0

)
: ε(ϕi )d�

−
∫

�

bϑ · ϕi d�−
∫

�N

t̄ϑ · ϕi d� = 0 (29)

for i = 1, . . . , 2Nn . Fi in Eq. (29) can be written in the sum
of a part Qi which depends on uϑ and a part Pi which is
independent of uϑ such as

Fi (uϑ) = Qi (uϑ)− Pi (30)
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with

Qi (uϑ) = Qi =
∫

�

σϑ

(
ε(uϑ − u0)+ C−1σ 0

)
: ε(ϕi )d�

(31)

Pi =
∫

�

bϑ · ϕi d�+
∫

�N

t̄ϑ · ϕi d� (32)

2.5 Iterative solution

In order to solve Eq. (29) in this work, Newton–Raphson
method is used [2]. In each step of the Newton iterations, the
discrete displacement vector up

ϑ expressed in the nodal basis

by up
ϑ = ∑2Nn

i=1 ϕi ui is determined from iterative solution

DF(up
ϑ)u

p+1
ϑ = DF(up

ϑ)u
p
ϑ − F(up

ϑ) (33)

where DF is in fact the system stiffness matrix whose the
local entries are defined as(

DF
(

u p
ϑ,1, . . . , u p

ϑ,2Nn

))
rs

= ∂Fr

(
u p
ϑ,1, . . . , u p

ϑ,2Nn

)/
∂u p

ϑ,s (34)

where r, s ∈ �dof which is the set containing degrees of
freedom of all the nodes.

To properly apply the Dirichlet boundary conditions for
our nonlinear problem, we use the approach of Lagrange mul-
tipliers. Combining the Newton iteration (33) and the set of
boundary conditions imposed through Lagrange multipliers
λ, the extended system of equations is obtained
(

DF(up
ϑ) GT

G 0

)(
up+1
ϑ

λ

)
=

(
f

w0

)
(35)

with f = DF(up
ϑ)u

p
ϑ − F(up

ϑ) and G is a matrix created from

Dirichlet boundary conditions such that Gup+1
ϑ = w0.

The extended system of equations (35) can now be solved
for up+1

ϑ and λ at each time step. The solving process is

iterated until the relative residual F(u p+1
ϑ,z1

, . . . , u p+1
ϑ,zm

) for the
m free nodes (z1, . . . , zm) ∈ � (where � is the set of free
nodes) is smaller than a given tolerance or the maximum
number of iterations is larger than a prescribed number.

2.6 Discretization in space using the ES-FEM

In the ES-FEM, the domain discretization is still based on
the triangulation using triangular elements as in the stan-
dard FEM, but the integration required in the weak form (29)
is performed based on the “smoothing domains” associated
with the edges, and strain smoothing technique [4] is used. In
such an integration process, the closed problem domain� is
divided into NSD = Ned smoothing domains associated with

edges such that� = ∑Ned
k=1�

(k) and�(i)∩�( j) = ∅, i 	= j ,
in which Ned is the total number of edges located in the
entire problem domain. For triangular elements, the smooth-
ing domain �(k) associated with the edge k is created by
connecting two endpoints of the edge to centroids of adja-
cent elements as shown in Fig. 3.

Using the edge-based smoothing domains, smoothed
strains ε̃k can now be obtained using the compatible strains
εh = ∇s uϑ through the following smoothing operation over
domain �(k) associated with edge k

ε̃k =
∫

�(k)

εh(x)�k(x)d� =
∫

�(k)

∇suϑ(x)�k(x)d� (36)

where �k(x) is a given smoothing function that satisfies at
least unity property
∫

�(k)

�k(x)d� = 1 (37)

In the ES-FEM [14], we use the simplest local constant
smoothing function

�k (x) =
{

1/A(k) x ∈ �(k)
0 x /∈ �(k) (38)

where A(k) is the area of the smoothing domain �(k) and is
calculated by

A(k) =
∫

�(k)

d� = 1

3

N (k)
e∑

j=1

A( j)
e (39)

where N (k)
e is the number of elements around the edge

k (N (k)
e = 1 for the boundary edges and N (k)

e = 2 for inner
edges as shown in Fig. 3) and A( j)

e is the area of the j th
element around the edge k.

In the ES-FEM, the trial function is similar as in the
standard FEM with

up
ϑ =

2Nn∑

i=1

ϕi ui (40)

Substituting Eqs. (40) and (38) into (36), the smoothed strain
on the domain �(k) associated with edge k can be written in
the following matrix form of nodal displacements

ε̃k =
∑

I∈�(k)dof

B̃I (xk)uI (41)

where �(k)dof is the set containing degrees of freedom of
elements attached to the common edge k (for example, for
the boundary edge m as presented in Fig. 3, �(k)dof is the set
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containing degrees of freedom of nodes {A, B, C} and the
total number of degrees of freedom N (k)

dof = 6; for the inner

edge k as presented in Fig. 3, �(k)dof is the set containing
degrees of freedom of nodes {D, E, F, G} and the total
number of degrees of freedom N (k)

dof = 8) and B̃I (xk), that is
termed as the smoothed strain matrix on the domain �(k), is
calculated numerically by an assembly process similarly as
in FEM

B̃I (xk) = 1

A(k)

N (k)
e∑

j=1

1

3
A( j)

e B j (42)

where B j is the strain gradient matrix of the j th element
around the edge k which has the following form in the 2D
linear elastic problems

B j =
⎡
⎣
ϕ j,x 0

0 ϕ j,y

ϕ j,y ϕ j,x

⎤
⎦ (43)

Due to the use of the triangular elements with the linear shape
functions, the entries of matrix B j are constants, and so are
the entries of matrix B̃I (xk). Note that with this formula-
tion, only the area and the usual compatible strain gradient
matrices B j of triangular elements are needed to calculate
the system stiffness matrix for ES-FEM. This formulation is
quite straightforward to extend for the 3D problems using
tetrahedral elements [21,23].

In the discrete version of the visco-elastoplastic prob-
lems using the ES-FEM with the smoothed strain (36) used
for smoothing domains associated with edges, Eq. (29) now
becomes: seeking uϑ ∈ V

h such that

Fi =
∫

�

σϑ

(
ε̃ (uϑ − u0)+ C−1σ 0

)
: ε̃(ϕi )d�

−
∫

�

bϑ · ϕi d�−
∫

�N

t̄ϑ · ϕi d� = 0 (44)

for i = 1, . . . , 2Nn , and the local stiffness matrix DF(k)rs

in Eq. (34) associated with smoothing domain �(k) can be
expressed as follows

DF(k)rs = ∂F(k)r

∂u p
ϑ,s

= ∂Q(k)
r

∂u p
ϑ,s

= ∂

∂u p
ϑ,s

⎛
⎜⎝

∫

�(k)

σϑ

⎛
⎜⎝ε̃k

⎛
⎜⎝

∑

l∈�(k)dof

u p
ϑ,lϕl − u0

⎞
⎟⎠

+ C−1σ 0

⎞
⎟⎠ : ε̃k(ϕr )d�

⎞
⎟⎠ (45)

where r, s ∈ �(k)dof , and

Q(k)
r =

∫

�(k)

σϑ

(
ε̃k (uϑ − u0)+ C−1σ 0

)
: ε̃k(ϕr )d� (46)

The expression σϑ(ε̃k(uϑ − u0)+ C−1σ 0) in Eqs. (45) and
(46) now is replaced by σϑ written explicitly in Eqs. (19),
(20), (22), (23), (25), (26) for different cases of visco-elasto-
plasticity with just replacing ε by ε̃k in corresponding posi-
tions which give the following results:

(a) Visco-elastoplasticity:

Q(k)
r = A(k) (C1tr(ṽk)tr (ε̃k(ϕr ))

+ C4dev(ṽk) : ε̃k(ϕr )) (47)

DF(k)rs = A(k) (C1tr (ε̃k(ϕr )) tr (ε̃k(ϕs))

+ C4dev (ε̃k(ϕr )) : ε̃k(ϕs)

− (C5)r dev(ṽk) : ε̃k(ϕs)) (48)

where ṽk = ε̃k(uϑ − u0)+ C−1σ 0 and

C4 =
⎧
⎨
⎩

C2 + C3/‖dev(ṽk )‖ if ‖dev(ṽk )‖ − βσY > 0

2µ else

C5 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C3/‖dev(ṽk )‖3 [
dev (ε̃k (ϕr )) : dev(ṽk )

]N (k)dof
r=1 if ‖dev(ṽk )‖

−βσY > 0
[

0 · · · 0
]T

︸ ︷︷ ︸
size of 1× N(k)dof

else
(49)

in which C1,C2,C3 are determined by (21).
(b) Visco-elastoplasticity with isotropic hardening

Q(k)
r = A(k) (C1tr(ṽk)tr (ε̃k(ϕr ))

+ C5dev(ṽk) : ε̃k(ϕr )) (50)

DF(k)rs = A(k) (C1tr (ε̃k(ϕr )) tr (ε̃k(ϕs))

+ C5dev (ε̃k(ϕr )) : ε̃k(ϕs)

− (C6)r dev(ṽk) : ε̃k(ϕs)) (51)

where
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Fig. 4 Flow chart to solve the
visco-elastoplastic problems
using the ES-FEM: part 1

C5 =
{

C3/ (C2 ‖dev(ṽk)‖)+ C4/C2 if ‖dev(ṽk)‖ − β
(
1 + α I

0 H
)
σY > 0

2µ else

C6 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

C3/
(

C2 ‖dev(ṽk)‖3
) [

dev (ε̃k (ϕr )) : dev(ṽk)
]N (k)

dof
r=1 if ‖dev(ṽk)‖ − β

(
1 + α I

0 H
)
σY > 0

[
0 · · · 0

]T

︸ ︷︷ ︸
size of 1×N (k)

dof

else (52)

in which C1,C2,C3,C4 is determined by (24).
(c) Visco-elastoplasticity with linear kinematic hardening

Q(k)
r = A(k)

(
C1tr(ṽk)tr

(
ε̃k(ϕr )

)

+ C4dev(ṽk) : ε̃k(ϕr )+ c dev(αK
0 ) : ε̃k(ϕr )

)
(53)

DF(k)rs = A(k) (C1tr (ε̃k(ϕr )) tr (ε̃k(ϕs))

+ C4dev (ε̃k(ϕr )) : ε̃k(ϕs)

− (C5)r dev(ṽk) : ε̃k(ϕs)) (54)

where
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Fig. 5 Flow chart to solve the
visco-elastoplastic problems
using the ES-FEM: part 2

C4 =
{

C3/‖dev(ṽk)‖ + C2 if
∥∥dev

(
ṽk − βαK

0

)∥∥ − βσY > 0

2µ else
(55)

C5 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C3/‖dev(ṽk)‖3 [
dev (ε̃k(ϕr )) : dev(ṽk)

]N (k)
dof

r=1 if
∥∥dev

(
ṽk − βαK

0

)∥∥ − βσY > 0
[

0 · · · 0
]T

︸ ︷︷ ︸
size of 1×N(k)dof

else

c =
{

1 if
∥∥dev

(
ṽk − βαK

0

)∥∥ − βσY > 0

0 else

in which C1,C2,C3 is determined by (27).
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Fig. 6 Patches used to
calculate stresses of the nodes
and the elements of two
methods FEM and ES-FEM
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Fig. 7 Plate with a circular hole subjected to time dependent surface
forces g(t) and its quarter model with symmetric conditions imposed
on the left and bottom edges

Applying the Dirichlet boundary conditions and solving
the extended system of equations (35) by the ES-FEM are
identical to those of the FEM.

Recall one disadvantage of the ES-FEM is that the band-
width of stiffness matrix is larger than that of the FEM,
because the number of nodes related to the smoothing
domains associated with inner edges is 4, which is 1 larger
than that related to the elements. The computational cost of
the ES-FEM therefore is larger than that of FEM for the
same meshes. We also note that the trial function uϑ(x) for
elements in the ES-FEM is the same as in the standard FEM
and therefore the force vector Pi in the ES-FEM is computed
in the same way as in the FEM. In other words, the ES-FEM
changes only the stiffness matrix. Figures 4 and 5 present the
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2

Fig. 8 A domain discretization using 561 nodes and 1,024 triangular
elements for the plate with a circular hole subjected to time dependent
surface forces g(t)

flow chart to solve the visco-elastoplastic problems using the
ES-FEM.

3 A-posteriori error estimation

In order to estimate the accuracy of the ES-FEM compared
to the FEM for the visco-elastoplastic problems, in this work
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Table 1 Number of iterations
and the estimated error using the
FEM and ES-FEM at various
time steps for the plate with hole

Step FEM ES-FEM

Iterations ηh = ‖Rσ h−σ h‖L2(�)

‖σ h‖L2(�)
Iterations ηh = ‖Rσ h−σ h‖L2(�)

‖σ h‖L2(�)

1 1 0.1 1 0.0475

2 1 0.1 1 0.0475

3 1 0.1 1 0.0475

4 1 0.1 1 0.0475

5 1 0.1 1 0.0475

6 1 0.1 1 0.0475

7 3 0.1 3 0.0475

8 4 0.101 4 0.0476

9 4 0.103 4 0.0480

10 4 0.106 4 0.0486
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Fig. 9 Comparison of the computational cost and efficiency between the FEM and ES-FEM for a range of meshes at t = 0.3 for the plate with
hole; a Computational cost; b Computational efficiency

we will use the following efficient a-posteriori error estima-
tion [2,3]

ηh =
∥∥Rσ h − σ h

∥∥
L2(�)∥∥σ h

∥∥
L2(�)

=
(∑Ne

e=1

∫
�e

(
Rσ h − σ h

) : (Rσ h − σ h
)

d�
)½

(∑Ne
e=1

∫
�e

σ h : σ hd�
)½ (56)

where Rσ h is a globally continuous recovery stress field
derived from the discrete (discontinuous) numerical element
stress field σ h . The quantity ηh can monitor the local spatial
approximation error, and a larger value of ηh implies a larger
spatial error.

For the ES-FEM, when computing the stresses σ h for an
element, we can average those stresses of smoothing domains

of the element, and the averaged stresses are regarded as the
stresses of the element as shown in Fig. 6. Similarly, to cal-
culate numerical stresses σ h(x j ) at a node x j , we simply
average the stresses of smoothing domains associated with
the node as shown in Fig. 6. For the FEM, we can regard
the stresses at the centroid as the element stresses σ h , while
the stresses σ h(x j ) at a node x j are the averaged stresses
of those of the elements surrounding the node as shown in
Fig. 6.

The recovery stress field Rσ h in Eq. (56) for each ele-
ment in the ES-FEM and the FEM now can be derived from
the numerical stresses σ h

(
x j

)
at the node x j by using the

following approximation

Rσ h =
3∑

j=1

N j (x) σ h (
x j

)
(57)
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where N j (x) are the linear shape functions of triangles used
in the standard FEM, and σ h(x j ) are stress values at three
nodes of the element.

In order to evaluate the integrals in Eq. (56) for triangu-
lar elements, the mapping procedure using Gauss integra-
tion is performed on each element with a summation on all
elements. In each element, a proper number of Gauss points
depending on the order of the recovery solution Rσ h will
be used.

4 Numerical examples

In this section, some numerical examples will be presented
to demonstrate the properties of the ES-FEM for visco-
elastoplastic analyses. To emphasize the superior properties
of the present method, the ES-FEM will be compared to the
standard FEM by Carstensen and Klose [2].

4.1 Plate with a circular hole: perfect visco-elastoplasticity

Figure 7 represents a plate� = [−2, 2]×[−2, 2] with a cen-
tral circular hole, radius a = 1 m, subjected to time depen-
dent surface forces g(t) = 500t to outer normal at the top and
the bottom edges. The rest of the boundary is free. Due to its
symmetry, only the upper right quadrant of the plate is mod-
eled. Symmetric conditions are imposed on the left and bot-
tom edges, and the inner boundary of the hole is traction free.
Figure 8 gives a discretization of the domain using 561 nodes
and 1,024 triangular elements. Assuming that the material is
perfect viscoplasticity with Young’s modulus E = 206, 900,

Poisson’s ratio v = 0.29, yield stress σY = 450 and the
initial data for the stress vector σ 0 is set zero.

The solution is computed in the time interval from t = 0
to t = 0.3 in 10 uniform steps of time
t = 0.03. Using the
mesh as shown in Fig. 8, the material remains elastic in six
first steps, between t = 0 and t = 0.18 for both the ES-FEM
and FEM as shown in Table 1, because the number of itera-
tions at these times is 1. Table 1 also shows that the number
of iterations in Newton’s method of both ES-FEM and FEM
are almost the same, but the estimated errors ηh in Eq. (56)
of the ES-FEM are more than two times less than those of
FEM. In addition, Fig. 9 compares the computational cost
and efficiency between the FEM and ES-FEM for a range of
meshes at t = 0.3. It is seen that with the same mesh, the
computational cost of ES-FEM is larger than that of FEM as
shown in Fig. 9a. However, when the efficiency of compu-
tation (computation time for the same accuracy) in terms of
the error estimator versus computational cost for a range of
meshes is considered, the ES-FEM is more efficient than the
FEM as shown in Fig. 9b.

Figure 10 shows the elastic shear energy density
‖dev(Rσ h)‖2/(4µ) using the FEM and ES-FEM at t = 0.3.
The plasticity domain first appears at the corner contain-
ing point A(1, 0) and then at the corner containing point
B(0, 1). The evolution process of the elastic shear energy
density ‖dev(Rσ h)‖2/(4µ) can be clearly observed from the
ES-FEM results at four different time instances (see Fig. 11).
Table 2 compares the displacements of points A(1, 0) and
B(0, 1) using FEM and ES-FEM at different time steps. The
results show that the displacements of ES-FEM are larger
than those of FEM. This implies that the ES-FEM model can
reduce the over-stiffness of the standard FEM model using
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Fig. 10 Elastic shear energy density ‖dev(Rσ h)‖2/(4µ) for plate with hole using the FEM (a) and ES-FEM (b) at t = 0.3 (mesh with 561 nodes
and 1,024 elements)
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Fig. 11 Elastic shear energy density ‖dev(Rσ h)‖2/(4µ) obtained using the ES-FEM at some different time steps for the plate with hole; a t = 0.12;
b t = 0.18; c t = 0.24; d t = 0.3

Table 2 Horizontal
displacement u A at point A(1, 0)
and vertical displacement vB at
point B(0, 1) using FEM and
ES-FEM at various time steps
for the plate with hole

Step FEM ES-FEM

u A (×10−3) vB (×10−3) u A (×10−3) vB (×10−3)

1 −0.312 0.4862 −0.316 0.4921

2 −0.624 0.9724 −0.632 0.9842

3 −0.936 1.4586 −0.949 1.4763

4 −1.248 1.9448 −1.265 1.9684

5 −1.560 2.4311 −1.581 2.4605

6 −1.871 2.9173 −1.897 2.9526

7 −2.184 3.4038 −2.214 3.4450

8 −2.503 3.9016 −2.536 3.9530

9 −2.823 4.4286 −2.861 4.4947

10 −3.159 4.9956 −3.183 5.0833
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Fig. 12 Convergence of the elastic strain energy E = ∫
�

σϑ : eϑd�
versus the number of degrees of freedom using the FEM and ES-FEM
at t = 0.3 for the plate with hole

triangular elements. This property was found earlier for lin-
ear elastic problems by Liu et al. [14].

Figure 12 shows the convergence of the elastic strain
energy E = ∫

�
σϑ : eϑ d� versus the number of degrees

of freedom using the FEM and ES-FEM at t = 0.3. The
solution of the ES-FEM using a very fine mesh including
28,730 degrees of freedom is used as reference solution. The
results show clearly that the ES-FEM model is much softer
and gives more accurate results than the FEM model using
triangular elements, especially for the coarse meshes.

4.2 Cook’s membrane problem: visco-elastoplasticity
with isotropic hardening

This benchmark problem, shown in Fig. 13, refers to a
clamped tapered panel subjected to an in-plane shearing load
g(t) = e3t/40 on the opposite end (x = 48) with vanish-
ing volume force f . Figure 13 also gives a discretization of

Fig. 13 Cook’s membrane
problem and its dicretization
using 289 nodes and 512
triangular elements

Thickness = 1

g(t)

0 10 20 30 40
0

10

20

30

40

50

60

Table 3 Number of iterations
and the estimated error using the
FEM and ES-FEM at various
time steps for Cook’s membrane
problem

Step FEM ES-FEM

Iterations ηh = ‖Rσ h− σ h‖L2(�)

‖σ h‖L2(�)
Iterations ηh = ‖Rσ h− σ h‖L2(�)

‖σ h‖L2(�)

1 1 0.197645 1 0.076465

2 1 0.197645 1 0.076465

3 3 0.197646 3 0.076469

4 3 0.197650 3 0.076469

5 3 0.197652 3 0.076466

6 3 0.197654 3 0.076453

7 3 0.197656 3 0.076431

8 4 0.197660 4 0.076402

9 4 0.197671 4 0.076366

10 4 0.197690 4 0.076325
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Fig. 14 Comparison of the computational cost and efficiency between the FEM and ES-FEM for a range of meshes at t = 0.25 for the Cook’s
membrane problem; a Computational cost; b Computational efficiency
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Fig. 15 Elastic shear energy density ‖dev(Rσ h)‖2/(4µ) for Cook’s membrane problem using the FEM (a) and ES-FEM (b) at t = 0.25
(mesh with 289 nodes, 512 elements)

the domain using 289 nodes and 512 triangular elements.
Assuming that the material is isotropic hardening viscoplas-
ticity with Young’s modulus E = 2,900, Poisson’s ratio
v = 0.4, yield stress σY = 0.1, H = 1,000, H1 = 1; and the
initial data for the stress vector σ 0 and the scalar hardening
parameter α I

0 are set zero.
The solution is calculated in the time interval from t = 0 to

t = 0.25 in 10 uniform steps of time 
t = 0.025. Using the
mesh as shown in Fig. 13, the material remains elastic in two
first steps, between t = 0 and t = 0.05 for both ES-FEM

and FEM as shown in Table 3. Table 3 also shows that the
number of iterations in Newton’s method of both ES-FEM
and FEM are almost the same, but the estimated errors ηh in
Eq. (56) of ES-FEM are about three times less than those of
FEM. In addition, Fig. 14 compares the computational cost
and efficiency between the FEM and ES-FEM for a range of
meshes at t = 0.25. It is seen that with the same mesh, the
computational cost of ES-FEM is larger than that of FEM as
shown in Fig. 14a. However, when the efficiency of compu-
tation (computation time for the same accuracy) in terms of
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Fig. 16 Elastic shear energy density‖dev(Rσ h)‖2/(4µ)using the ES-FEM at some different time steps for Cook’s membrane problem; a t = 0.025;
b t = 0.10; c t = 0.175; d t = 0.25

the error estimator versus computational cost for a range of
meshes is considered, the ES-FEM is more efficient than the
FEM as shown in Fig. 14b.

Figure 15 shows the elastic shear energy density ‖dev
(Rσ h)‖2/(4µ) using FEM and ES-FEM at t = 0.25 for the
mesh as shown in Fig. 13. The evolution process of the elas-
tic shear energy density ‖dev(Rσ h)‖2/(4µ) can be clearly
observed from the ES-FEM results at four different time
instances (see Fig. 16). Table 4 also compares the displace-
ment of point A(48, 60) using the FEM and ES-FEM at dif-
ferent time steps. The results show that the displacements of

ES-FEM are larger than those of FEM. This again verifies
that the ES-FEM model can reduce the over-stiffness of the
standard FEM model using triangular elements.

Figure 17 shows the convergence of the elastic strain
energy E = ∫

�
σϑ : eϑd� versus the number of degrees

of freedom using the FEM and ES-FEM at t = 0.25. The
solution of ES-FEM using a very fine mesh including 26,041
degrees of freedom is used as reference solution. The results
again show clearly that the ES-FEM model is much softer
and gives more accurate results than the FEM model using
triangular elements, especially for the coarse meshes.
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Table 4 Displacement at point
A(48, 60) using the FEM and
ES-FEM at various time steps
for Cook’s membrane problem

Step FEM ES-FEM

u A vA u A vA

1 −0.0022 0.0031 −0.0023 0.0032

2 −0.0024 0.0033 −0.0025 0.0034

3 −0.0026 0.0035 −0.0027 0.0037

4 −0.0028 0.0038 −0.0029 0.0040

5 −0.0030 0.0041 −0.0031 0.0043

6 −0.0032 0.0044 −0.0034 0.0046

7 −0.0035 0.0048 −0.0036 0.0049

8 −0.0037 0.0052 −0.0039 0.0053

9 −0.0040 0.0056 −0.0042 0.0057

10 −0.0043 0.0060 −0.0045 0.0062
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Fig. 17 Convergence of the elastic strain energy E = ∫
�

σϑ : eϑd�
versus the number of degrees of freedom using the FEM and ES-FEM
at t = 0.25 for Cook’s membrane problem

4.3 Axis-symmetric ring: visco-elastoplasticity with linear
kinematic hardening

Figure 18 shows a thick axis-symmetric ring, with internal
radius a = 1, external radius b = 2, subjected to time
depending surface forces g1(r, ϕ, t) = ter on inner radius
and g2(r, ϕ, t) = −ter/4 on outer radius with er = (cosϕ,
sin ϕ). There is no body force. For this problem, the exact
solution [2] is

u (r, ϕ, t) = ur (r, t) er

σ (r, ϕ, t) = σr (r, t) er ⊗ er + σϕeϕ ⊗ eϕ (58)

p (r, ϕ, t) = Pr (r, t)
(
er ⊗ er − eϕ ⊗ eϕ

)

where er = (cosϕ, sin ϕ), eϕ = (− sin ϕ, cosϕ) and

ur (r, t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t

2µr
− 1

3
ψ I (R (t))

(
r + 4a

µr

)
for r ≥ R (t)

t

2µr
− 1

3
ψ I (R (t))

(
4r + 4a

µr

)
+ ψ I (r) r for r < R (t)

(59)

Fig. 18 The axis-symmetric
ring subjected to time dependent
surface forces g1(t) on inner
radius and g2(t) on outer radius
and its quarter model with
symmetric conditions imposed
on the left and bottom edges
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Fig. 19 Domain discretization of one quarter of the axis-symmetric
ring using 561 nodes and 1,024 triangular elements

σr (r, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− t

r2 − 8

3
aψ I (R (t))

(
1

4
− 1

r2

)
for r ≥ R (t)

− t

r2 − 8

3
aψ I (R (t))

(
1 − 1

r2

)

+2aψ I (r) for r< R (t)

(60)

σϕ (r, t) = ∂ (rσr )

∂r
(61)

Pr (r, t) =

⎧
⎪⎨
⎪⎩

0 for r ≥ R (t)

σy√
2 (aψ + k1)

(
1 − R2

r2

)
for r < R (t)

(62)

I (r) = σy√
2 (aψ + k1)

(
ln r + 1

2

(
R2

r2 − R2
))

(63)
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Fig. 20 Comparison of the computational cost and efficiency between the FEM and ES-FEM for a range of meshes at t = 0.22 for the axis-sym-
metric ring problem; a Computational cost; b Computational efficiency

Table 5 Number of iterations and the estimated error using the FEM and ES-FEM at various time steps for the axis-symmetric ring problem

Step FEM-T3 ES-FEM

Iters e = ‖σ−σ h‖L2
‖σ h‖L2

ηh = ‖Rσ h−σ h‖L2
‖σ h‖L2

e
ηh Iters e = ‖σ−σ h‖L2

‖σ h‖L2
ηh = ‖Rσ h−σ h‖L2

‖σ h‖L2

e
ηh

1 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02

2 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02

3 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02

4 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02

5 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02

6 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02

7 1 0.079725 0.0792 1.01 1 0.03342 0.0328 1.02

8 3 0.083988 0.0816 1.03 4 0.03376 0.0331 1.02

9 4 0.089265 0.0874 1.02 4 0.03372 0.0340 0.99

10 5 0.095374 0.0933 1.02 4 0.03269 0.0330 0.99

11 5 0.102883 0.1004 1.02 5 0.03206 0.0324 0.99
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Fig. 21 Elastic shear energy density ‖dev(Rσ h)‖2/(4µ) for the axis-symmetric ring problem using the FEM (a) and ES-FEM (b) at t = 0.22
(mesh with 561 nodes and 1,024 triangular elements)
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Fig. 22 Evolution of the elastic shear energy density ‖dev(Rσ h)‖2/(4µ) using the ES-FEM at some different time steps for the axis-symmetric
ring problem; a t = 0.04; b t = 0.1; c t = 0.16; d t = 0.22
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Table 6 Horizontal displacement at point A(1, 0) and vertical displacement at point B(0, 1) using FEM and ES-FEM at various time steps for the
axis-symmetric ring problem

Time FEM ES-FEM

Iterations u A vB u A/vB Iterations u A vB u A/vB

1 1 0.0376 0.0381 0.9866 1 0.0379 0.0380 0.9979

2 1 0.0752 0.0763 0.9866 1 0.0759 0.0760 0.9979

3 1 0.1129 0.1144 0.9866 1 0.1138 0.1141 0.9979

4 1 0.1505 0.1525 0.9866 1 0.1518 0.1521 0.9979

5 1 0.1881 0.1907 0.9866 1 0.1897 0.1901 0.9979

6 1 0.2257 0.2288 0.9866 1 0.2276 0.2281 0.9979

7 1 0.2634 0.2669 0.9866 1 0.2656 0.2662 0.9979

8 3 0.3049 0.3097 0.9845 3 0.3077 0.3091 0.9955

9 4 0.3586 0.3653 0.9817 4 0.3620 0.3642 0.9941

10 5 0.4305 0.4385 0.9819 4 0.4356 0.4386 0.9931

11 5 0.5336 0.5386 0.9906 4 0.5382 0.5422 0.9927

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

1.5

2

2.5

3

3.5

x 10
−7

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

1.5

2

2.5

3

3.5

x 10
−7

(a) FEM (b) ES-FEM 

Fig. 23 Elastic shear energy density ‖dev(Rσ h)‖2/(4µ) for the axis-symmetric ring problem using the FEM (a) and ES-FEM (b) at t = 0.22
(mesh with 45 nodes and 64 triangular elements)

and a = µ + λ,ψ = 2µ/(2µ+ λ). With α = 4aψ/
(3(aψ + k1)), the radius of the plastic boundary R(t) is the
positive root of

f (R) = −2α ln R + (α − 1)R2 − α +
√

2

σy
t (64)

Because of the axis-symmetric characteristic of the prob-
lem, we only calculate for one quarter of ring as shown
in Fig. 18, and symmetric conditions are imposed on the
left and bottom edges. Figure 19 gives a discretization of
the domain using 561 nodes and 1,024 triangular elements.
The material parameters are given with Young’s modulus
E = 70,000, Poisson’s ratio v = 0.33, yield stress σY = 0.2,
the hardening parameter is k1 = 1, and the initial data for

the displacement u0, the stress vector σ 0 and the hardening
parameter αK

0 are set zero.
The solution is calculated in the time interval from t = 0

to t = 0.22 in 11 uniform steps of time 
t = 0.02. Using
the mesh as shown in Fig. 19, the material remains elastic
in seven first steps, between t = 0 and t = 0.14 for both
ES-FEM and FEM as shown in Table 5. The material becomes
plastic at t = 0.16. Table 5 also shows the exact error e and
estimated error ηh for the different time steps together with
the number of iterations in Newton’s method. The results
show that the ratio e/ηh almost equals 1 for all iterations
which implies that the estimated error ηh can be regarded as
an accurate error estimator. This example therefore asserts
the reliability of the estimated error ηh used in this work.
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Fig. 24 Convergence of the elastic strain energy E = ∫
�

σϑ : eϑd�
versus the number of degrees of freedom using the FEM and ES-FEM
at t = 0.22 for the axis-symmetric ring problem

In addition, the results also shows that the number of iter-
ations in Newton’s method of both ES-FEM and FEM are
almost the same, but the estimated errors ηh in Eq. (56) of the
ES-FEM are about three times less than those of FEM. Fur-
ther more, Fig. 20 compares the computational cost and effi-
ciency between the FEM and ES-FEM for a range of
meshes at t = 0.22. It is seen that with the same mesh, the
computational cost of ES-FEM is larger than that of FEM as
shown in Fig. 20a. However, when the efficiency of compu-
tation (computation time for the same accuracy) in terms of
the error estimator versus computational cost for a range of
meshes is considered, the ES-FEM is more efficient than the
FEM as shown in Fig. 20b.

Figure 21 shows the elastic shear energy density
‖dev(Rσ h)‖2/(4µ) using FEM and ES-FEM at t = 0.22.
The plastic domain first appears at the inner radius and extents
toward the outer radius. The evolution process of the elas-
tic shear energy density ‖dev(Rσ h)‖2/(4µ) can be clearly
observed from the ES-FEM results at four different time
instances (see Fig. 22). Table 6 shows the ratio of radial dis-
placements between points A(1, 0) and B(0, 1) using the
FEM and ES-FEM at various time steps. It is seen that for
the symmetric problem, the results of ES-FEM is more
symmetric than those of FEM. This finding is also supported
by the solution of the elastic shear energy density ‖dev
(Rσ h)‖2/(4µ) shown as contour in Fig. 23 obtained using
a coarse mesh with 45 nodes and 64 triangular elements.

Figure 24 shows the convergence of the elastic strain
energy E = ∫

�
σϑ : eϑd� versus the number of degrees

of freedom using the FEM and ES-FEM at t = 0.22. The
results again verify that the ES-FEM model is much softer
and gives more accurate results than the FEM model using
triangular elements, especially for the coarse meshes.

5 Conclusion

In this paper, the ES-FEM is extended to more complicated
visco-elastoplastic analyses. We combine the ES-FEM using
triangular elements with the work of Carstensen and Klose
[2] in the setting of von-Mises conditions and the Prandtl–
Reuss flow rule, and the material behavior includes perfect
visco-elastoplasticity, and visco-elastoplasticity with isotro-
pic and linear kinematic hardening in a dual model, with
displacements and the stresses as the main variables. The
numerical procedure, however, eliminates the stress variables
and the problem becomes only displacement-dependent and
is much easy to deal with. The numerical results of ES-FEM
using triangular elements show that

• The displacement results of ES-FEM are larger than those
of FEM. The elastic strain energy of ES-FEM is much
more accurate than that of FEM. These results show
clearly that the ES-FEM model can reduce the over-
stiffness of the standard FEM model using triangular ele-
ments and gives much more accurate results than those of
FEM. These properties were demonstrated for the static,
free and forced vibration analyses of elastic solids by Liu
et al. [14].

• The a-posteriori estimated error ηh used in this work is
shown to be reliable to represent the accurate error esti-
mator. The bandwidth of stiffness matrix of ES-FEM is
larger than that of FEM, and hence the computational cost
of ES-FEM is larger than that of FEM. However, when
the efficiency of computation (computation time for the
same accuracy) in terms of the a-posteriori error estima-
tion is considered, the ES-FEM is more efficient than the
FEM.

• For the coarse meshes, the results of ES-FEM are much
more accurate than those of FEM.

• For the axis-symmetric problems, the results of ES-FEM
are more symmetric than those of FEM.
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